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Abstract
Experimental results from a new single-transient optical recorder with < 300 fs resolution are presented.

The system uses a 103× temporal imaging system to expand the waveform which is then recorded with a
streak camera.

Submission to LEOS’99



Subpicosecond Single-Shot Waveform Measurement using Temporal Imaging

C. V. Bennett† and B. H. Kolner††
† Dept. of Electrical Engineering, University of California, Los Angeles, and

Lawrence Livermore National Laboratory, P.O. Box 808, L-174, Livermore, California, 94551

cvbennett@llnl.gov
†† Dept. of Applied Science, 228 Walker Hall, University of California, Davis, Davis, California, 95616

kolner@leorg.ucdavis.edu

The recording of single-transient phenomena with a very large time-bandwidth product is a particularly
challenging task. While many techniques have been developed to record ultrafast optical signals with sub
100 fs detail [1] they often have practical limitations on the total amount of time that can be recorded or rely
on sampling of a repetitive waveform. A waveform manipulation technique known as temporal imaging [2–4]
is being developed to overcome some of these limitations. Temporal imaging can expand an arbitrary optical
waveform in time while maintaining the shape of the unknown envelope profile, thus allowing it to be recorded
by a slower technology with a resolution improved by the magnification of the imaging system. We present
here the first single-shot temporal images produced with an upconversion temporal imaging system [5, 6] and
recorded with a streak camera.

The experiment performed has three basic parts; generation of a test pattern, 103× magnification of the
test pattern with an upconversion temporal imaging system, and recording of the temporal image with a
streak camera. A test pattern was actually generated and temporally magnified every period of the laser.
We demonstrate single-shot operation by running the streak camera in a single-sweep mode.

The system was tested with a two pulse input pattern generated by propagating an 87 fs pulse from a
modelocked Ti:Sapphire laser through a Michelson interferometer. The delay, ∆τin, between the two pulses
was adjusted in 667.1± .7 fs steps by varying the length of one arm of the interferometer.

A temporal imaging system (Fig. 1) is produced by cascading input dispersive propagation, a quadratic
phase modulation in time which acts as a “time lens,” and output dispersive propagation. This is directly
analogous to the cascading of paraxial diffraction, quadratic phase modulation in space produced by a normal
lens, and further paraxial diffraction used to generate a spatial imaging system. Since imparting a linear
frequency chirp is equivalent to imparting a quadratic temporal phase, we are able to implement the time
lens by noncollinear sum-frequency generation of the dispersed input signal with a linearly frequency swept
(dω/dτ ) pump pulse. The strength of the time lens is characterized by a focal group delay dispersion (GDD)
φ′′f = −(dω/dτ )−1; the amount of GDD required to remove the chirp imparted by the time lens. When these
processes are balanced in accordance with the imaging condition 1/φ′′1 + 1/φ′′2 = 1/φ′′f , a temporal image
with magnification M = −φ′′2/φ

′′
1 is created. The temporal imaging system is shown in Fig. 1 and presented

in more detail in references [5, 6], where repetitive photodiode and sampling oscilloscope measurements
demonstrated < 200 fs resolution and a 5.65 ps field of view. A difficulty for single-shot measurements was
the low pulse energies. The laser produces 12.5 nJ/pulse, which was split to form the pump and input pulses.
After propagating through their respective dispersive delay lines (50% transmission) there was 3 nJ in the
pump and 375 pJ/pulse in the signal before mixing in the crystal. The upconversion efficiency and output
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Fig. 1. Upconversion temporal imaging system with
magnification M = +103.
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Fig. 2. Streak camera triggering configuration.
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Fig. 3. Three single-shot temporal images recorded for
each delay setting, including the trigger jitter.
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Fig. 4. One image from each input delay setting with
the offsets adjusted to remove the trigger jitter.

dispersion losses produced an image with only 0.4 pJ/pulse.
The temporal imaging process actually produces a complete image for every occurrence of the pump pulse.

We demonstrated this by recording temporal images with a Hamamatsu streak camera (M1952 Streak Unit
& C1582 Temporal Disperser), configured as shown in Fig. 2. A request to record a trace opens the shutter
on the CCD camera, resets the streak unit, and produces a trigger pulse from the C-CCD/FT camera
controller. The first SRS DG535 delay/pulse generator gives a 10 ms delay to ensure mechanical shutters are
open. A trigger synchronized with the laser system is produced in the Tek DD501 digital delay generator by
performing a fast AND operation with a photodiode signal internal to the Spectra Physics system (SP 3555
monitor output). A second SRS DG535 is used to generate the two triggers required by the streak camera.
First the “Pre Trig In” turns on the microchannel plate (MCP) which was operated near its maximum gain
of 104, then about 1 µs later a pulse from the Picosecond Pulse Labs 2000 pulse generator triggers a single
sweep of the streak tube. When the streak has completed, the MCP turns off to minimize background noise
(1.5 counts rms) and the “monitor out” signal triggers the C-CCD/FT to read the CCD. The streak camera
was operated on the “2 ns/15 mm” sweep setting, which at an input slit width of 30 µm had a measured
impulse response of 10–14.5 ps FWHM, depending on the pulse energy. The slit was subsequently opened
to 60 µm to increase the signal but the impulse response was not remeasured.

Figure 3 shows the results of recording three temporal images for each setting of delay between pulses
at the input. The jitter in these data is 111 ps rms, primarily resulting from the Tek DD501. In Fig. 4
only one trace per group of three is plotted and the initial times are adjusted to remove the trigger jitter.
Also plotted is a line representing the expected +103× temporal magnification. Clearly, input test pattern
changes of 667 fs produced output time delay changes (≈68.7 ps) consistent with predictions. Although
noisy, the average duration of the pulses in Fig. 4 is 19.3 ps, which agrees well with the expected pulse
widths when the ideal 9 ps impulse response of the imaging system and an assumed 15 ps impulse response
of the streak camera are considered. The poor signal-to-noise (S/N) in this experiment is due in part to the
low pulse energy and in part to the electronics.

Although further improvements of the S/N and trigger jitter are needed, this experiment demonstrates
< 300 fs resolution in a temporal imaging-based single-shot recording system. It is expected that further
development of this technology will lead to a new class of single-transient recorders with ultrafast resolution
and long record length.
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